An Empirical Study on the Overlapping Problem of Open-Domain Dialogue Datasets

LREC 2022  ·  Yuqiao Wen, Guoqing Luo, Lili Mou ·

Open-domain dialogue systems aim to converse with humans through text, and dialogue research has heavily relied on benchmark datasets. In this work, we observe the overlapping problem in DailyDialog and OpenSubtitles, two popular open-domain dialogue benchmark datasets. Our systematic analysis then shows that such overlapping can be exploited to obtain fake state-of-the-art performance. Finally, we address this issue by cleaning these datasets and setting up a proper data processing procedure for future research.

PDF Abstract LREC 2022 PDF LREC 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here