Energy-based error bound of physics-informed neural network solutions in elasticity

18 Oct 2020  ·  Mengwu Guo, Ehsan Haghighat ·

An energy-based a posteriori error bound is proposed for the physics-informed neural network solutions of elasticity problems. An admissible displacement-stress solution pair is obtained from a mixed form of physics-informed neural networks, and the proposed error bound is formulated as the constitutive relation error defined by the solution pair. Such an error estimator provides an upper bound of the global error of neural network discretization. The bounding property, as well as the asymptotic behavior of the physics-informed neural network solutions, are studied in a demonstrating example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here