An Energy-concentrated Wavelet Transform for Time Frequency Analysis of Transient Signals

22 Feb 2022  ·  Haoran Dong, Gang Yu ·

Transient signals are often composed of a series of modes that have multivalued time-dependent instantaneous frequency (IF), which brings challenges to the development of signal processing technology. Fortunately, the group delay (GD) of such signal can be well expressed as a single valued function of frequency. By considering the frequency-domain signal model, we present a postprocessing method called wavelet transform (WT)-based time-reassigned synchrosqueezing transform (WTSST). Our proposed method embeds a two-dimensional GD operator into a synchrosqueezing framework to generate a time-frequency representation (TFR) of transient signal with high energy concentration and allows to retrieve the whole or part of the signal. The theoretical analyses of the WTSST are provided, including the analysis of GD candidate accuracy and signal reconstruction accuracy. Moreover, based on WTSST, the WT-based time-reassigned multisynchrosqueezing transform (WTMSST) is proposed by introducing a stepwise refinement scheme, which further improves the drawback that the WTSST method is unable to deal with strong frequency-varying signal. Simulation and real signal analysis illustrate that the proposed methods have the capacity to appropriately describe the features of transient signals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here