An Energy-efficient Capacitive-Memristive Content Addressable Memory

Content addressable memory is popular in the field of intelligent computing systems with its searching nature. Emerging CAMs show a promising increase in pixel density and a decrease in power consumption than pure CMOS solutions. This article introduced an energy-efficient 3T1R1C TCAM cooperating with capacitor dividers and RRAM devices. The RRAM as a storage element also acts as a switch to the capacitor divider while searching for content. CAM cells benefit from working parallel in an array structure. We implemented a 64 x 64 array and digital controllers to perform with an internal built-in clock frequency of 875MHz. Both data searches and reads take 3x clock cycles. Its worst average energy for data match is reported to be 1.71 fJ/bit-search and the worst average energy for data miss is found with 4.69 fJ/bit-search. The prototype is simulated and fabricated in 0.18 um technology with in-lab RRAM post-processing. Such memory explores the charge domain searching mechanism and can be applied to data centers that are power-hungry.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods