An Enhanced V-cycle MgNet Model for Operator Learning in Numerical Partial Differential Equations

2 Feb 2023  ·  Jianqing Zhu, Juncai He, Qiumei Huang ·

This study used a multigrid-based convolutional neural network architecture known as MgNet in operator learning to solve numerical partial differential equations (PDEs). Given the property of smoothing iterations in multigrid methods where low-frequency errors decay slowly, we introduced a low-frequency correction structure for residuals to enhance the standard V-cycle MgNet. The enhanced MgNet model can capture the low-frequency features of solutions considerably better than the standard V-cycle MgNet. The numerical results obtained using some standard operator learning tasks are better than those obtained using many state-of-the-art methods, demonstrating the efficiency of our model.Moreover, numerically, our new model is more robust in case of low- and high-resolution data during training and testing, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here