An Exercise Fatigue Detection Model Based on Machine Learning Methods

7 Mar 2018 Ming-Yen Wu Chi-Hua Chen Chi-Chun Lo

This study proposes an exercise fatigue detection model based on real-time clinical data which includes time domain analysis, frequency domain analysis, detrended fluctuation analysis, approximate entropy, and sample entropy. Furthermore, this study proposed a feature extraction method which is combined with an analytical hierarchy process to analyze and extract critical features... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet