An experimental analysis of Noise-Contrastive Estimation: the noise distribution matters

EACL 2017 Matthieu LabeauAlex Allauzenre

Noise Contrastive Estimation (NCE) is a learning procedure that is regularly used to train neural language models, since it avoids the computational bottleneck caused by the output softmax. In this paper, we attempt to explain some of the weaknesses of this objective function, and to draw directions for further developments... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet