An Extended Level Method for Efficient Multiple Kernel Learning

NeurIPS 2008 Zenglin XuRong JinIrwin KingMichael Lyu

We consider the problem of multiple kernel learning (MKL), which can be formulated as a convex-concave problem. In the past, two efficient methods, i.e., Semi-Infinite Linear Programming (SILP) and Subgradient Descent (SD), have been proposed for large-scale multiple kernel learning... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet