An Hybrid Method for the Estimation of the Breast Mechanical Parameters

9 Mar 2020  ·  Diogo Lopes, António Ramires Fernandes, Stéphane Clain ·

There are several numerical models that describe real phenomena being used to solve complex problems. For example, an accurate numerical breast model can provide assistance to surgeons with visual information of the breast as a result of a surgery simulation. The process of finding the model parameters requires numeric inputs, either based in medical imaging techniques, or other measures. Inputs can be processed by iterative methods (inverse elasticity solvers). Such solvers are highly robust and provide solutions within the required degree of accuracy. However, their computational complexity is costly. On the other hand, machine learning based approaches provide outputs in real-time. Although high accuracy rates can be achieved, these methods are not exempt from producing solutions outside the required degree of accuracy. In the context of real life situations, a non accurate solution might present complications to the patient. We present an hybrid parameter estimation method to take advantage of the positive features of each of the aforementioned approaches. Our method preserves both the real-time performance of deep-learning methods, and the reliability of inverse elasticity solvers. The underlying reasoning behind our proposal is the fact that deep-learning methods, such as neural networks, can provide accurate results in the majority of cases and they just need a fail-safe system to ensure its reliability. Hence, we propose using a Multilayer Neural Networks (MNN) to get an estimation which is in turn validated by a iterative solver. In case the MNN provides an estimation not within the required accuracy range, the solver refines the estimation until the required accuracy is achieved. Based on our results we can conclude that the presented hybrid method is able to complement the computational performance of MNNs with the robustness of iterative solver approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here