An incremental linear-time learning algorithm for the Optimum-Path Forest classifier

12 Apr 2016  ·  Moacir Ponti, Mateus Riva ·

We present a classification method with incremental capabilities based on the Optimum-Path Forest classifier (OPF). The OPF considers instances as nodes of a fully-connected training graph, arc weights represent distances between two feature vectors. Our algorithm includes new instances in an OPF in linear-time, while keeping similar accuracies when compared with the original quadratic-time model.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here