An Incremental Self-Organizing Architecture for Sensorimotor Learning and Prediction

22 Dec 2017  ·  Luiza Mici, German I. Parisi, Stefan Wermter ·

During visuomotor tasks, robots must compensate for temporal delays inherent in their sensorimotor processing systems. Delay compensation becomes crucial in a dynamic environment where the visual input is constantly changing, e.g., during the interacting with a human demonstrator. For this purpose, the robot must be equipped with a prediction mechanism for using the acquired perceptual experience to estimate possible future motor commands. In this paper, we present a novel neural network architecture that learns prototypical visuomotor representations and provides reliable predictions on the basis of the visual input. These predictions are used to compensate for the delayed motor behavior in an online manner. We investigate the performance of our method with a set of experiments comprising a humanoid robot that has to learn and generate visually perceived arm motion trajectories. We evaluate the accuracy in terms of mean prediction error and analyze the response of the network to novel movement demonstrations. Additionally, we report experiments with incomplete data sequences, showing the robustness of the proposed architecture in the case of a noisy and faulty visual sensor.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here