An optimal unrestricted learning procedure

17 Jul 2017  ·  Shahar Mendelson ·

We study learning problems involving arbitrary classes of functions $F$, distributions $X$ and targets $Y$. Because proper learning procedures, i.e., procedures that are only allowed to select functions in $F$, tend to perform poorly unless the problem satisfies some additional structural property (e.g., that $F$ is convex), we consider unrestricted learning procedures that are free to choose functions outside the given class. We present a new unrestricted procedure that is optimal in a very strong sense: the required sample complexity is essentially the best one can hope for, and the estimate holds for (almost) any problem, including heavy-tailed situations. Moreover, the sample complexity coincides with the what one would expect if $F$ were convex, even when $F$ is not. And if $F$ is convex, the procedure turns out to be proper. Thus, the unrestricted procedure is actually optimal in both realms, for convex classes as a proper procedure and for arbitrary classes as an unrestricted procedure.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here