An Ordered Lasso and Sparse Time-Lagged Regression

26 May 2014  ·  Xiaotong Suo, Robert Tibshirani ·

We consider regression scenarios where it is natural to impose an order constraint on the coefficients. We propose an order-constrained version of L1-regularized regression for this problem, and show how to solve it efficiently using the well-known Pool Adjacent Violators Algorithm as its proximal operator... The main application of this idea is time-lagged regression, where we predict an outcome at time t from features at the previous K time points. In this setting it is natural to assume that the coefficients decay as we move farther away from t, and hence the order constraint is reasonable. Potential applications include financial time series and prediction of dynamic patient out- comes based on clinical measurements. We illustrate this idea on real and simulated data. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here