An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies

1 Apr 2020David EnthovenZaid Al-Ars

With the increased attention and legislation for data-privacy, collaborative machine learning (ML) algorithms are being developed to ensure the protection of private data used for processing. Federated learning (FL) is the most popular of these methods, which provides privacy preservation by facilitating collaborative training of a shared model without the need to exchange any private data with a centralized server... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet