Analysis of a Reduced-Communication Diffusion LMS Algorithm

In diffusion-based algorithms for adaptive distributed estimation, each node of an adaptive network estimates a target parameter vector by creating an intermediate estimate and then combining the intermediate estimates available within its closed neighborhood. We analyze the performance of a reduced-communication diffusion least mean-square (RC-DLMS) algorithm, which allows each node to receive the intermediate estimates of only a subset of its neighbors at each iteration... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet