Comprehensive Analysis of Over-smoothing in Graph Neural Networks from Markov Chains Perspective

12 Nov 2022  ·  Weichen Zhao, Chenguang Wang, Congying Han, Tiande Guo ·

The over-smoothing problem is an obstacle of developing deep graph neural network (GNN). Although many approaches to improve the over-smoothing problem have been proposed, there is still a lack of comprehensive understanding and conclusion of this problem. In this work, we analyze the over-smoothing problem from the Markov chain perspective. We focus on message passing of GNN and first establish a connection between GNNs and Markov chains on the graph. GNNs are divided into two classes of operator-consistent and operator-inconsistent based on whether the corresponding Markov chains are time-homogeneous. Next we attribute the over-smoothing problem to the convergence of an arbitrary initial distribution to a stationary distribution. Based on this, we prove that although the previously proposed methods can alleviate over-smoothing, but these methods cannot avoid the over-smoothing problem. In addition, we give the conclusion of the over-smoothing problem in two types of GNNs in the Markovian sense. On the one hand, operator-consistent GNN cannot avoid over-smoothing at an exponential rate. On the other hand, operator-inconsistent GNN is not always over-smoothing. Further, we investigate the existence of the limiting distribution of the time-inhomogeneous Markov chain, from which we derive a sufficient condition for operator-inconsistent GNN to avoid over-smoothing. Finally, we design experiments to verify our findings. Results show that our proposed sufficient condition can effectively improve over-smoothing problem in operator-inconsistent GNN and enhance the performance of the model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods