Analyzing the coupling process of distributed mixed real-virtual prototypes

22 Jan 2024  ·  Peter Baumann, Lars Mikelsons, Oliver Kotte, Dieter Schramm ·

The ongoing connection and automation of vehicles leads to a closer interaction of the individual vehicle components, which demands for consideration throughout the entire development process. In the design phase, this is achieved through co-simulation of component models. However, complex co-simulation environments are rarely (re-)used in the verification and validation phases, in which mixed real-virtual prototypes (e.g. Hardware-in-the-Loop) are already available. One reason for this are coupling errors such as time-delays, which inevitably occur in co-simulation of virtual and real-time systems, and which influence system behavior in an unknown and generally detrimental way. This contribution introduces a novel, adaptive method to compensate for constant time-delays in potentially highly nonlinear, spatially distributed mixed real-virtual prototypes, using small feedforward neural networks. Their optimal initialization with respect to defined frequency domain features results from a-priori frequency domain analysis of the entire coupled system, including coupling faults and compensation methods. A linear and a nonlinear example demonstrate the method and emphasize its suitability for nonlinear systems due to online training and adaptation. As the compensation method requires knowledge only of the bandwidths, the proposed method is applicable to distributed mixed real-virtual prototypes in general.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here