Angle-Displacement Rigidity Theory with Application to Distributed Network Localization

19 Dec 2023  ·  Xu Fang, Xiaolei Li, Lihua Xie ·

This paper investigates the localization problem of a network in 2-D and 3-D spaces given the positions of anchor nodes in a global frame and inter-node relative measurements in local coordinate frames. It is assumed that the local frames of different nodes have different unknown orientations. First, an angle-displacement rigidity theory is developed, which can be used to localize all the free nodes by the known positions of the anchor nodes and local relative measurements (local relative position, distance, local relative bearing, angle, or ratio-of-distance measurements). Then, necessary and sufficient conditions for network localizability are given. Finally, a distributed network localization protocol is proposed, which can globally estimate the locations of all the free nodes of a network if the network is infinitesimally angle-displacement rigid. The proposed method unifies local-relative-position-based, distance-based, local-relative-bearing-based, angle-based, and ratio-of-distance-based distributed network localization approaches. The novelty of this work is that the proposed method can be applied in both generic and non-generic configurations with an unknown global coordinate frame in both 2-D and 3-D spaces.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here