ANT: Learning Accurate Network Throughput for Better Adaptive Video Streaming

26 Apr 2021  ·  Jiaoyang Yin, Yiling Xu, Hao Chen, Yunfei Zhang, Steve Appleby, Zhan Ma ·

Adaptive Bit Rate (ABR) decision plays a crucial role for ensuring satisfactory Quality of Experience (QoE) in video streaming applications, in which past network statistics are mainly leveraged for future network bandwidth prediction. However, most algorithms, either rules-based or learning-driven approaches, feed throughput traces or classified traces based on traditional statistics (i.e., mean/standard deviation) to drive ABR decision, leading to compromised performances in specific scenarios. Given the diverse network connections (e.g., WiFi, cellular and wired link) from time to time, this paper thus proposes to learn the ANT (a.k.a., Accurate Network Throughput) model to characterize the full spectrum of network throughput dynamics in the past for deriving the proper network condition associated with a specific cluster of network throughput segments (NTS). Each cluster of NTS is then used to generate a dedicated ABR model, by which we wish to better capture the network dynamics for diverse connections. We have integrated the ANT model with existing reinforcement learning (RL)-based ABR decision engine, where different ABR models are applied to respond to the accurate network sensing for better rate decision. Extensive experiment results show that our approach can significantly improve the user QoE by 65.5% and 31.3% respectively, compared with the state-of-the-art Pensive and Oboe, across a wide range of network scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here