Anti-Jerk On-Ramp Merging Using Deep Reinforcement Learning

15 May 2020 Lin Yuan McPhee John Azad Nasser L.

Deep Reinforcement Learning (DRL) is used here for decentralized decision-making and longitudinal control for high-speed on-ramp merging. The DRL environment state includes the states of five vehicles: the merging vehicle, along with two preceding and two following vehicles when the merging vehicle is or is projected on the main road... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet