APB2Face: Audio-guided face reenactment with auxiliary pose and blink signals

30 Apr 2020  ·  Jiangning Zhang, Liang Liu, Zhu-Cun Xue, Yong liu ·

Audio-guided face reenactment aims at generating photorealistic faces using audio information while maintaining the same facial movement as when speaking to a real person. However, existing methods can not generate vivid face images or only reenact low-resolution faces, which limits the application value. To solve those problems, we propose a novel deep neural network named APB2Face, which consists of GeometryPredictor and FaceReenactor modules. GeometryPredictor uses extra head pose and blink state signals as well as audio to predict the latent landmark geometry information, while FaceReenactor inputs the face landmark image to reenact the photorealistic face. A new dataset AnnVI collected from YouTube is presented to support the approach, and experimental results indicate the superiority of our method than state-of-the-arts, whether in authenticity or controllability.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here