Approximate Frank-Wolfe Algorithms over Graph-structured Support Sets

29 Jun 2021  ·  Baojian Zhou, Yifan Sun ·

In this paper, we consider approximate Frank-Wolfe (FW) algorithms to solve convex optimization problems over graph-structured support sets where the linear minimization oracle (LMO) cannot be efficiently obtained in general. We first demonstrate that two popular approximation assumptions (additive and multiplicative gap errors) are not applicable in that no cheap gap-approximate LMO oracle exists. Thus, approximate dual maximization oracles (DMO) are proposed, which approximate the inner product rather than the gap. We prove that the standard FW method using a $\delta$-approximate DMO converges as $\mathcal{O}((1-\delta) \sqrt{s}/\delta)$ in the worst case, and as $\mathcal{O}(L/(\delta^2 t))$ over a $\delta$-relaxation of the constraint set. Furthermore, when the solution is on the boundary, a variant of FW converges as $\mathcal{O}(1/t^2)$ under the quadratic growth assumption. Our empirical results suggest that even these improved bounds are pessimistic, showing fast convergence in recovering real-world images with graph-structured sparsity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here