Approximate Predictive Control Barrier Functions using Neural Networks: A Computationally Cheap and Permissive Safety Filter

A predictive control barrier function (PCBF) based safety filter is a modular framework to verify safety of a control input by predicting a future trajectory. The approach relies on the solution of two optimization problems, first computing the minimal state constraint violation given the current state in the form of slacks on the constraint, and then computing the minimal deviation from a proposed input given the previously computed minimal slacks. This paper presents an approximation procedure that uses a neural network to approximate the optimal value function of the first optimization problem, which defines a control barrier function (CBF). By including this explicit approximation in a CBF-based safety filter formulation, the online computation becomes independent of the prediction horizon. It is shown that this approximation guarantees convergence to a neighborhood of the feasible set of the PCBF safety filter problem with zero constraint violation. The convergence result relies on a novel class $\mathcal{K}$ lower bound on the PCBF decrease and depends on the approximation error of the neural network. Lastly, we demonstrate our approach in simulation for an autonomous driving example and show that the proposed approximation leads to a significant decrease in computation time compared to the original approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here