Approximation Bounds for Random Neural Networks and Reservoir Systems

14 Feb 2020  ·  Lukas Gonon, Lyudmila Grigoryeva, Juan-Pablo Ortega ·

This work studies approximation based on single-hidden-layer feedforward and recurrent neural networks with randomly generated internal weights. These methods, in which only the last layer of weights and a few hyperparameters are optimized, have been successfully applied in a wide range of static and dynamic learning problems. Despite the popularity of this approach in empirical tasks, important theoretical questions regarding the relation between the unknown function, the weight distribution, and the approximation rate have remained open. In this work it is proved that, as long as the unknown function, functional, or dynamical system is sufficiently regular, it is possible to draw the internal weights of the random (recurrent) neural network from a generic distribution (not depending on the unknown object) and quantify the error in terms of the number of neurons and the hyperparameters. In particular, this proves that echo state networks with randomly generated weights are capable of approximating a wide class of dynamical systems arbitrarily well and thus provides the first mathematical explanation for their empirically observed success at learning dynamical systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here