Are LLMs Ready for Real-World Materials Discovery?

7 Feb 2024  ·  Santiago Miret, N M Anoop Krishnan ·

Large Language Models (LLMs) create exciting possibilities for powerful language processing tools to accelerate research in materials science. While LLMs have great potential to accelerate materials understanding and discovery, they currently fall short in being practical materials science tools. In this position paper, we show relevant failure cases of LLMs in materials science that reveal current limitations of LLMs related to comprehending and reasoning over complex, interconnected materials science knowledge. Given those shortcomings, we outline a framework for developing Materials Science LLMs (MatSci-LLMs) that are grounded in materials science knowledge and hypothesis generation followed by hypothesis testing. The path to attaining performant MatSci-LLMs rests in large part on building high-quality, multi-modal datasets sourced from scientific literature where various information extraction challenges persist. As such, we describe key materials science information extraction challenges which need to be overcome in order to build large-scale, multi-modal datasets that capture valuable materials science knowledge. Finally, we outline a roadmap for applying future MatSci-LLMs for real-world materials discovery via: 1. Automated Knowledge Base Generation; 2. Automated In-Silico Material Design; and 3. MatSci-LLM Integrated Self-Driving Materials Laboratories.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods