Astronomical Image Denoising Using Dictionary Learning

12 Apr 2013 Simon Beckouche Jean-Luc Starck Jalal Fadili

Astronomical images suffer a constant presence of multiple defects that are consequences of the intrinsic properties of the acquisition equipments, and atmospheric conditions. One of the most frequent defects in astronomical imaging is the presence of additive noise which makes a denoising step mandatory before processing data... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet