Asymmetric Correlation Quantization Hashing for Cross-modal Retrieval

14 Jan 2020Lu WangJie Yang

Due to the superiority in similarity computation and database storage for large-scale multiple modalities data, cross-modal hashing methods have attracted extensive attention in similarity retrieval across the heterogeneous modalities. However, there are still some limitations to be further taken into account: (1) most current CMH methods transform real-valued data points into discrete compact binary codes under the binary constraints, limiting the capability of representation for original data on account of abundant loss of information and producing suboptimal hash codes; (2) the discrete binary constraint learning model is hard to solve, where the retrieval performance may greatly reduce by relaxing the binary constraints for large quantization error; (3) handling the learning problem of CMH in a symmetric framework, leading to difficult and complex optimization objective... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet