Asymptotic Theory for Regularized System Identification Part I: Empirical Bayes Hyper-parameter Estimator

25 Sep 2022  ·  Yue Ju, Biqiang Mu, Lennart Ljung, Tianshi Chen ·

Regularized system identification is the major advance in system identification in the last decade. Although many promising results have been achieved, it is far from complete and there are still many key problems to be solved. One of them is the asymptotic theory, which is about convergence properties of the model estimators as the sample size goes to infinity. The existing related results for regularized system identification are about the almost sure convergence of various hyper-parameter estimators. A common problem of those results is that they do not contain information on the factors that affect the convergence properties of those hyper-parameter estimators, e.g., the regression matrix. In this paper, we tackle problems of this kind for the regularized finite impulse response model estimation with the empirical Bayes (EB) hyper-parameter estimator and filtered white noise input. In order to expose and find those factors, we study the convergence in distribution of the EB hyper-parameter estimator, and the asymptotic distribution of its corresponding model estimator. For illustration, we run Monte Carlo simulations to show the efficacy of our obtained theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here