Asymptotically Efficient Off-Policy Evaluation for Tabular Reinforcement Learning

29 Jan 2020  ·  Ming Yin, Yu-Xiang Wang ·

We consider the problem of off-policy evaluation for reinforcement learning, where the goal is to estimate the expected reward of a target policy $\pi$ using offline data collected by running a logging policy $\mu$. Standard importance-sampling based approaches for this problem suffer from a variance that scales exponentially with time horizon $H$, which motivates a splurge of recent interest in alternatives that break the "Curse of Horizon" (Liu et al. 2018, Xie et al. 2019). In particular, it was shown that a marginalized importance sampling (MIS) approach can be used to achieve an estimation error of order $O(H^3/ n)$ in mean square error (MSE) under an episodic Markov Decision Process model with finite states and potentially infinite actions. The MSE bound however is still a factor of $H$ away from a Cramer-Rao lower bound of order $\Omega(H^2/n)$. In this paper, we prove that with a simple modification to the MIS estimator, we can asymptotically attain the Cramer-Rao lower bound, provided that the action space is finite. We also provide a general method for constructing MIS estimators with high-probability error bounds.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here