Asynchronous decentralized accelerated stochastic gradient descent

24 Sep 2018  ·  Guanghui Lan, Yi Zhou ·

In this work, we introduce an asynchronous decentralized accelerated stochastic gradient descent type of method for decentralized stochastic optimization, considering communication and synchronization are the major bottlenecks. We establish $\mathcal{O}(1/\epsilon)$ (resp., $\mathcal{O}(1/\sqrt{\epsilon})$) communication complexity and $\mathcal{O}(1/\epsilon^2)$ (resp., $\mathcal{O}(1/\epsilon)$) sampling complexity for solving general convex (resp., strongly convex) problems.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here