ATLIS: Identifying Locational Information in Text Automatically

LREC 2012  ·  John Vogel, Marc Verhagen, James Pustejovsky ·

ATLIS (short for “ ATLIS Tags Locations in Strings”) is a tool being developed using a maximum-entropy machine learning model for automatically identifying information relating to spatial and locational information in natural language text. It is being developed in parallel with the ISO-Space standard for annotation of spatial information (Pustejovsky, Moszkowicz {\&} Verhagen 2011). The goal of ATLIS is to be able to take in a document as raw text and mark it up with ISO-Space annotation data, so that another program could use the information in a standardized format to reason about the semantics of the spatial information in the document. The tool (as well as ISO-Space itself) is still in the early stages of development. At present it implements a subset of the proposed ISO-Space annotation standard: it identifies expressions that refer to specific places, as well as identifying prepositional constructions that indicate a spatial relationship between two objects. In this paper, the structure of the ATLIS tool is presented, along with preliminary evaluations of its performance.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here