Attacking Binarized Neural Networks

Neural networks with low-precision weights and activations offer compelling efficiency advantages over their full-precision equivalents. The two most frequently discussed benefits of quantization are reduced memory consumption, and a faster forward pass when implemented with efficient bitwise operations. We propose a third benefit of very low-precision neural networks: improved robustness against some adversarial attacks, and in the worst case, performance that is on par with full-precision models. We focus on the very low-precision case where weights and activations are both quantized to $\pm$1, and note that stochastically quantizing weights in just one layer can sharply reduce the impact of iterative attacks. We observe that non-scaled binary neural networks exhibit a similar effect to the original defensive distillation procedure that led to gradient masking, and a false notion of security. We address this by conducting both black-box and white-box experiments with binary models that do not artificially mask gradients.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here