Audio Similarity is Unreliable as a Proxy for Audio Quality

27 Jun 2022  ·  Pranay Manocha, Zeyu Jin, Adam Finkelstein ·

Many audio processing tasks require perceptual assessment. However, the time and expense of obtaining ``gold standard'' human judgments limit the availability of such data. Most applications incorporate full reference or other similarity-based metrics (e.g. PESQ) that depend on a clean reference. Researchers have relied on such metrics to evaluate and compare various proposed methods, often concluding that small, measured differences imply one is more effective than another. This paper demonstrates several practical scenarios where similarity metrics fail to agree with human perception, because they: (1) vary with clean references; (2) rely on attributes that humans factor out when considering quality, and (3) are sensitive to imperceptible signal level differences. In those scenarios, we show that no-reference metrics do not suffer from such shortcomings and correlate better with human perception. We conclude therefore that similarity serves as an unreliable proxy for audio quality.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here