Authorless Topic Models: Biasing Models Away from Known Structure
Most previous work in unsupervised semantic modeling in the presence of metadata has assumed that our goal is to make latent dimensions more correlated with metadata, but in practice the exact opposite is often true. Some users want topic models that highlight differences between, for example, authors, but others seek more subtle connections across authors. We introduce three metrics for identifying topics that are highly correlated with metadata, and demonstrate that this problem affects between 30 and 50{\%} of the topics in models trained on two real-world collections, regardless of the size of the model. We find that we can predict which words cause this phenomenon and that by selectively subsampling these words we dramatically reduce topic-metadata correlation, improve topic stability, and maintain or even improve model quality.
PDF Abstract COLING 2018 PDF COLING 2018 Abstract