Auto-Weighted Layer Representation Based View Synthesis Distortion Estimation for 3-D Video Coding

7 Jan 2022  ·  Jian Jin, Xingxing Zhang, Lili Meng, Weisi Lin, Jie Liang, Huaxiang Zhang, Yao Zhao ·

Recently, various view synthesis distortion estimation models have been studied to better serve for 3-D video coding. However, they can hardly model the relationship quantitatively among different levels of depth changes, texture degeneration, and the view synthesis distortion (VSD), which is crucial for rate-distortion optimization and rate allocation. In this paper, an auto-weighted layer representation based view synthesis distortion estimation model is developed. Firstly, the sub-VSD (S-VSD) is defined according to the level of depth changes and their associated texture degeneration. After that, a set of theoretical derivations demonstrate that the VSD can be approximately decomposed into the S-VSDs multiplied by their associated weights. To obtain the S-VSDs, a layer-based representation of S-VSD is developed, where all the pixels with the same level of depth changes are represented with a layer to enable efficient S-VSD calculation at the layer level. Meanwhile, a nonlinear mapping function is learnt to accurately represent the relationship between the VSD and S-VSDs, automatically providing weights for S-VSDs during the VSD estimation. To learn such function, a dataset of VSD and its associated S-VSDs are built. Experimental results show that the VSD can be accurately estimated with the weights learnt by the nonlinear mapping function once its associated S-VSDs are available. The proposed method outperforms the relevant state-of-the-art methods in both accuracy and efficiency. The dataset and source code of the proposed method will be available at https://github.com/jianjin008/.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here