Automated assessment of knowledge hierarchy evolution: comparing directed acyclic graphs

Information Retrieval Journal 2019 Guruprasad NayakSourav DuttaDeepak AjwaniPatrick NicholsonAlessandra Sala

Automated construction of knowledge hierarchies from huge data corpora is gaining increasing attention in recent years, in order to tackle the infeasibility of manually extracting and semantically linking millions of concepts. As a knowledge hierarchy evolves with these automated techniques, there is a need for measures to assess its temporal evolution, quantifying the similarities between different versions and identifying the relative growth of different subgraphs in the knowledge hierarchy... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet