Automatic 3D Indoor Scene Modeling From Single Panorama

CVPR 2018  ·  Yang Yang, Shi Jin, Ruiyang Liu, Sing Bing Kang, Jingyi Yu ·

We describe a system that automatically extracts 3D geometry of an indoor scene from a single 2D panorama. Our system recovers the spatial layout by finding the floor, walls, and ceiling; it also recovers shapes of typical indoor objects such as furniture... Using sampled perspective sub-views, we extract geometric cues (lines, vanishing points, orientation map, and surface normals) and semantic cues (saliency and object detection information). These cues are used for ground plane estimation and occlusion reasoning. The global spatial layout is inferred through a constraint graph on line segments and planar superpixels. The recovered layout is then used to guide shape estimation of the remaining objects using their normal information. Experiments on synthetic and real datasets show that our approach is state-of-the-art in both accuracy and efficiency. Our system can handle cluttered scenes with complex geometry that are challenging to existing techniques. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods