Open-Ended Automatic Programming Through Combinatorial Evolution

20 Feb 2021  ·  Sebastian Fix, Thomas Probst, Oliver Ruggli, Thomas Hanne, Patrik Christen ·

Combinatorial evolution - the creation of new things through the combination of existing things - can be a powerful way to evolve rather than design technical objects such as electronic circuits. Intriguingly, this seems to be an ongoing and thus open-ended process creating novelty with increasing complexity. Here, we employ combinatorial evolution in software development. While current approaches such as genetic programming are efficient in solving particular problems, they all converge towards a solution and do not create anything new anymore afterwards. Combinatorial evolution of complex systems such as languages and technology are considered open-ended. Therefore, open-ended automatic programming might be possible through combinatorial evolution. We implemented a computer program simulating combinatorial evolution of code blocks stored in a database to make them available for combining. Automatic programming in the sense of algorithm-based code generation is achieved by evaluating regular expressions. We found that reserved keywords of a programming language are suitable for defining the basic code blocks at the beginning of the simulation. We also found that placeholders can be used to combine code blocks and that code complexity can be described in terms of the importance to the programming language. As in a previous combinatorial evolution simulation of electronic circuits, complexity increased from simple keywords and special characters to more complex variable declarations, class definitions, methods, and classes containing methods and variable declarations. Combinatorial evolution, therefore, seems to be a promising approach for open-ended automatic programming.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here