Paper

Automatic Self-Adaptive Local Voltage Control Under Limited Reactive Power

The increasing proliferation of distributed energy resources has posed new challenges to Volt/VAr control problems in distribution networks. To this end, this paper proposes an automatic self-adaptive local voltage control (ASALVC) by locally controlling VAr outputs of distributed energy resources. In this ASALVC strategy, each bus agent can locally and dynamically adjust its voltage droop function in accordance with time-varying system changes. The voltage droop function is associated with the bus-specific time-varying slope and intercept, which can be locally updated, merely based on local voltage measurements, without requiring communication. Stability, convergence, and optimality properties of this local voltage control are analytically established. In addition, the online implementation of ASALVC is further proposed to address the real-time system changes by adjusting VAr outputs of DERs online. Numerical test cases are performed to validate and demonstrate the effectiveness and superiority of ASALVC.

Results in Papers With Code
(↓ scroll down to see all results)