Automatically Identifying Words That Can Serve as Labels for Few-Shot Text Classification

A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this mapping between words and labels requires both domain expertise and an understanding of the language model's abilities. To mitigate this issue, we devise an approach that automatically finds such a mapping given small amounts of training data. For a number of tasks, the mapping found by our approach performs almost as well as hand-crafted label-to-word mappings.

PDF Abstract COLING 2020 PDF COLING 2020 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here