Autonomous Learning of Action Models for Planning

This paper introduces two new frameworks for learning action models for planning. In the mistake-bounded planning framework, the learner has access to a planner for the given model representation, a simulator, and a planning problem generator, and aims to learn a model with at most a polynomial number of faulty plans... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet