Avoiding Your Teacher's Mistakes: Training Neural Networks with Controlled Weak Supervision

1 Nov 2017Mostafa DehghaniAliaksei SeverynSascha RotheJaap Kamps

Training deep neural networks requires massive amounts of training data, but for many tasks only limited labeled data is available. This makes weak supervision attractive, using weak or noisy signals like the output of heuristic methods or user click-through data for training... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet