Backpropagation with N-D Vector-Valued Neurons Using Arbitrary Bilinear Products

24 May 2018  ·  Zhe-Cheng Fan, Tak-Shing T. Chan, Yi-Hsuan Yang, Jyh-Shing R. Jang ·

Vector-valued neural learning has emerged as a promising direction in deep learning recently. Traditionally, training data for neural networks (NNs) are formulated as a vector of scalars; however, its performance may not be optimal since associations among adjacent scalars are not modeled. In this paper, we propose a new vector neural architecture called the Arbitrary BIlinear Product Neural Network (ABIPNN), which processes information as vectors in each neuron, and the feedforward projections are defined using arbitrary bilinear products. Such bilinear products can include circular convolution, seven-dimensional vector product, skew circular convolution, reversed- time circular convolution, or other new products not seen in previous work. As a proof-of-concept, we apply our proposed network to multispectral image denoising and singing voice sepa- ration. Experimental results show that ABIPNN gains substantial improvements when compared to conventional NNs, suggesting that associations are learned during training.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here