Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff

NeurIPS 2015  ·  Ofer Dekel, Ronen Eldan, Tomer Koren ·

Bandit convex optimization is one of the fundamental problems in the field of online learning. The best algorithm for the general bandit convex optimization problem guarantees a regret of $\widetilde{O}(T^{5/6})$, while the best known lower bound is $\Omega(T^{1/2})$. Many attemptshave been made to bridge the huge gap between these bounds. A particularly interesting special case of this problem assumes that the loss functions are smooth. In this case, the best known algorithm guarantees a regret of $\widetilde{O}(T^{2/3})$. We present an efficient algorithm for the banditsmooth convex optimization problem that guarantees a regret of $\widetilde{O}(T^{5/8})$. Our result rules out an $\Omega(T^{2/3})$ lower bound and takes a significant step towards the resolution of this open problem.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here