Bayesian Cluster Enumeration Criterion for Unsupervised Learning

22 Oct 2017  ·  Freweyni K. Teklehaymanot, Michael Muma, Abdelhak M. Zoubir ·

We derive a new Bayesian Information Criterion (BIC) by formulating the problem of estimating the number of clusters in an observed data set as maximization of the posterior probability of the candidate models. Given that some mild assumptions are satisfied, we provide a general BIC expression for a broad class of data distributions... This serves as a starting point when deriving the BIC for specific distributions. Along this line, we provide a closed-form BIC expression for multivariate Gaussian distributed variables. We show that incorporating the data structure of the clustering problem into the derivation of the BIC results in an expression whose penalty term is different from that of the original BIC. We propose a two-step cluster enumeration algorithm. First, a model-based unsupervised learning algorithm partitions the data according to a given set of candidate models. Subsequently, the number of clusters is determined as the one associated with the model for which the proposed BIC is maximal. The performance of the proposed two-step algorithm is tested using synthetic and real data sets. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here