Bayesian Decision Process for Cost-Efficient Dynamic Ranking via Crowdsourcing

21 Dec 2016Xi ChenKevin JiaoQihang Lin

Rank aggregation based on pairwise comparisons over a set of items has a wide range of applications. Although considerable research has been devoted to the development of rank aggregation algorithms, one basic question is how to efficiently collect a large amount of high-quality pairwise comparisons for the ranking purpose... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet