Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models

NeurIPS 2013  ·  Jie Liu, David Page ·

In large-scale applications of undirected graphical models, such as social networks and biological networks, similar patterns occur frequently and give rise to similar parameters. In this situation, it is beneficial to group the parameters for more efficient learning. We show that even when the grouping is unknown, we can infer these parameter groups during learning via a Bayesian approach. We impose a Dirichlet process prior on the parameters. Posterior inference usually involves calculating intractable terms, and we propose two approximation algorithms, namely a Metropolis-Hastings algorithm with auxiliary variables and a Gibbs sampling algorithm with stripped Beta approximation (Gibbs_SBA). Simulations show that both algorithms outperform conventional maximum likelihood estimation (MLE). Gibbs_SBA's performance is close to Gibbs sampling with exact likelihood calculation. Models learned with Gibbs_SBA also generalize better than the models learned by MLE on real-world Senate voting data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here