Bayesian hierarchical stacking: Some models are (somewhere) useful

22 Jan 2021  ·  Yuling Yao, Gregor Pirš, Aki Vehtari, Andrew Gelman ·

Stacking is a widely used model averaging technique that asymptotically yields optimal predictions among linear averages. We show that stacking is most effective when model predictive performance is heterogeneous in inputs, and we can further improve the stacked mixture with a hierarchical model. We generalize stacking to Bayesian hierarchical stacking. The model weights are varying as a function of data, partially-pooled, and inferred using Bayesian inference. We further incorporate discrete and continuous inputs, other structured priors, and time series and longitudinal data. To verify the performance gain of the proposed method, we derive theory bounds, and demonstrate on several applied problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here