Bayesian learning of effective chemical master equations in crowded intracellular conditions

11 May 2022  ·  Svitlana Braichenko, Ramon Grima, Guido Sanguinetti ·

Biochemical reactions inside living cells often occur in the presence of crowders -- molecules that do not participate in the reactions but influence the reaction rates through excluded volume effects. However the standard approach to modelling stochastic intracellular reaction kinetics is based on the chemical master equation (CME) whose propensities are derived assuming no crowding effects. Here, we propose a machine learning strategy based on Bayesian Optimisation utilising synthetic data obtained from spatial cellular automata (CA) simulations (that explicitly model volume-exclusion effects) to learn effective propensity functions for CMEs. The predictions from a small CA training data set can then be extended to the whole range of parameter space describing physiologically relevant levels of crowding by means of Gaussian Process regression. We demonstrate the method on an enzyme-catalyzed reaction and a genetic feedback loop, showing good agreement between the time-dependent distributions of molecule numbers predicted by the effective CME and CA simulations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods