Bayesian Non-Parametric Multi-Source Modelling Based Determined Blind Source Separation

8 Apr 2019  ·  Chaitanya Narisetty, Tatsuya Komatsu, Reishi Kondo ·

This paper proposes a determined blind source separation method using Bayesian non-parametric modelling of sources. Conventionally source signals are separated from a given set of mixture signals by modelling them using non-negative matrix factorization (NMF). However in NMF, a latent variable signifying model complexity must be appropriately specified to avoid over-fitting or under-fitting. As real-world sources can be of varying and unknown complexities, we propose a Bayesian non-parametric framework which is invariant to such latent variables. We show that our proposed method adapts to different source complexities, while conventional methods require parameter tuning for optimal separation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here